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Abstract: In this paper, the modeling and validation process for the powertrain supervisory controller 

of Chevy Volt Gen II for charge sustaining operation is presented. To this end, three models are 

developed, including a control-oriented driver model, an artificial neural network (ANN) model to 

replicate vehicle mode selection, and a torque distribution model to determine torque allocation for 

electric motors and internal combustion (IC) engine for each operating mode of the vehicle. The 

developed models are based on experimental studies using data from vehicle operation for different 

drive cycles as well as real-world data of Chevy Volt driving at Michigan Technological University for 

different driving styles for different levels of aggressive driving behaviour. The results show that the 

ANN model can predict the vehicle operating mode with 99.3% accuracy. In addition, the validation 

results of the combined models for two US federal test procedures (FTP), namely UDDS and US06 

drive cycles demonstrate that the overall model predicts the net energy consumption of the vehicle 

within 5% of the experimental data. 
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1-Introduction  

The number of light-duty hybrid electric vehicles (HEVs), alternative fuel vehicles (AFVs), and diesel 

models offered by vehicle manufacturers in the US has almost tripled from 2010 (73 models) to 2019 

(218 models) [1]. In particular, during the same period, the number of HEV models offered has 

increased more than 60 times [1]. This increase in model offerings necessitates extensive research and 

development (R&D) effort and investment by the automotive original equipment manufacturers 

(OEMs). This demands for model-based design and validation of HEVs to minimize development time 

and cost, while constantly improving vehicle performance. To this end, model-in-the-loop (MIL), 
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software-in-the-loop (SIL), and hardware-in-the-loop (HIL) efforts are ever-increasing in the design of 

HEVs to minimize efforts in vehicle verification and validation (V&V) cycle. On related efforts at 

Michigan Technological University, our research team aims to reduce Chevy Volt Gen II (MY2017) 

vehicle energy consumption using vehicle-to-everything (V2X) connected data, and integrated 

powertrain and vehicle dynamics (PT&VD) controls. This is part of the NEXTCAR (Next-Generation 

Energy Technologies for Connected and Automated On-Road Vehicles) project sponsored by the U.S. 

Department of Energy (DOE). Table 1 shows general specification of Chevy Volt. 

Table 1: Chevy Volt Gen II specifications 

Parameters Values 

Engine type 1.5 L I-4 Ecotec engine, direct injection 

Engine peak torque/power 140 Nm / 75 kW 

Motor/Generator A (MGA) type Distributed bar wound, Ferrite magnet 

MGA unit peak torque/power 118 Nm / 48 kW 

Motor/Generator B (MGB) type Distributed bar wound, NdFeB magnet  

MGB peak torque/power 280 Nm / 87 kW 

Battery type Li-ion, 2 parallel 96 series configuration 

Battery Energy / peak capacity  18.4 kW-hr / 52 Ah 

EV range 53 miles 

Extended range 420 miles 

Curb weight 160 kg 

0-60 mph 8.4 seconds 

Top speed 98 mph 

Fuel economy 42 MPG / 106 MPGe (combined)   

 

This paper presents part of the modelling efforts to develop a model to represent vehicle supervisory 

controller (SC); thus, proper MIL, and HIL platforms can be developed to assess our designed VD&PT 

control strategies in comparison to the baseline vehicle controller. In addition, the SC has become part 

of our NEXTCAR evaluation platform to develop control strategies for optimum vehicle speed 

profiling and platooning to determine vehicle energy consumption. 

  

SCs are high-level controllers of a vehicle which for a given driving profile, decide on the power split 

between the Internal Combustion Engine (ICE) and the battery-electric-motor-generator operation to 

achieve optimal performance, including a trade-off between energy usage, requested speed profile 

tracking error, and drivability of the vehicle [3]. SCs are tasked with mode-selection, torque 

distribution, and making the connection between the driver and the powertrain. In general, HEVs bear 
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with themselves more complex engineering systems than conventional vehicles due to an increased 

number of power sources. Therefore the SC modelling for HEVs is more complicated than 

conventional vehicles. One such complication is controlling the torque distribution among different 

power sources available based on the power request. For the Chevy Volt Gen II, the power sources are 

ICE, electric motor A (MGA) and electric motor B (MGB) which exchange energy with the vehicle 

battery. This vehicle has five operating modes including two charge depletion (CD) modes (EV1 and 

EV2), and three charge sustaining (CS) modes namely low extended range (LER), fixed gear (FG) and 

high extended range (HER) that will be discussed later in the paper. The SC selects the vehicle 

operating mode to achieve the best energy conversion efficiency while meeting drivability, emissions, 

noise vibration, and harshness (NVH) constraints. 

 

There are few studies in literature describing the Chevy Volt Gen II SC structure in charge-sustaining 

mode. Conlon, B. et. al. [4] described the Voltec powertrain performance and efficiencies as well as 

the drive modes. The CS and CD operation logics were analyzed and the resulting data was used in our 

work for VS&PT model development. Kim, N. et. al. [5, 6] developed the Voltec powertrain model 

and studied vehicle performance under different operating conditions. They investigated key vehicle 

features at CS mode of operation. In [7], authors propose an adaptive supervisory controller, based on 

Pontryagin’s Minimum Principle (PMP), for on-line energy management optimization of Chevy Volt 

Gen II. Using minimum driving information, such as the total trip length and the average cycle speed, 

the proposed algorithm depends on the parameter adaptation from SOC feedback. In [8], authors 

present the performance of the SC developed for a parallel HEV, in particular, their method of mode 

selection using a state machine and a torque distribution module using dynamic equations. For each 

state (i.e. operating mode) then, a dynamic control strategy associated with that operating mode is 

discussed to facilitate a smooth transition between modes (no sudden shocks to the prime movers) 

while satisfying the vehicle power request. Even though in their study, they focus on both CS and CD 

operation whereas in this study, the focus is on CS operation, the ideas for smooth torque blending is 

universal to both studies. In [9], which is a survey paper for SC control algorithms of HEVs and 

PHEVs, the authors classify different control algorithms for from parallel, series, and power split 

HEVs and PHEVs. For Chevy Volt Gen II, which is a compound power split, this information was of 

use. 
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Although different models are found in the literature to simulate and optimize HEVs, models to 

represent the SC of “production HEVs” for MIL and HIL applications are rarely discussed in the 

literature. This paper aims to address this gap by developing a model that simulates the main SC tasks 

of a production HEV electronic control unit (ECU) such as mode selection, torque distribution, and 

driver model development. The SC model is demonstrated for Chevy Volt Gen II, but the same 

methodology can be utilized for other HEVs. 

 

The paper is organized as follows. Section 2 presents the modelling process step by step; first, we 

describe the VD&PT model components, then an overview of the SC is presented. Then the five 

vehicle drive modes are briefly explained and the designed ANN model to replicate the production 

vehicle SC for mode selection is introduced. Next, torque distribution, friction brake, and driver 

models are explained. In Section 3, the results of the two FTP drive cycle validations including vehicle 

velocity tracking error alongside energy consumption prediction errors are discussed. Finally,                   

Section 4 concludes the paper by summarizing the findings from this work. 

 

2-Modeling 

Fig. (1) shows the overall model layout for the Chevy Volt Gen II. The model was developed in 

MATLAB/Simulink environment and the experimental data from Argonne National Laboratory (ANL) 

was used to validate the final SC model.  

 

The two major subsystems of this model are the HEV SC model and the plant (VD&PT) model. The 

VD&PT plant model consists of submodels of the three power sources [7, 8], the traction power 

inverter module (TPIM) [9], battery and the vehicle dynamics. The VD&PT model predicts the vehicle 

performance in terms of vehicle speed and total energy consumed. The parameters of interest such as 

battery State of Charge (SOC), vehicle speed and engine speed are fed back to the controller which 

distributes the torque among three power sources and also controls the amount of friction braking 

needed during vehicle deceleration. The SC model consists of vehicle drive mode selection and the 

torque distribution algorithm. A driver model is also developed to make a link between requested 

vehicle speed and required axle torque. 
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Figure 1: Overview of combined VD&PT and HEV supervisory controller (SC) model for Chevy Volt Gen II 

 

2.1- VD&PT Model  

A high-fidelity VD&PT model was developed [10, 11] to predict vehicle energy consumption using 

the inputs including commanded ICE torque, MGB torque, MGA speed and vehicle drive mode to 

determine vehicle velocity and energy consumption. Figure (2) shows a schematic of the developed 

VD&PT model. The torque requests for the ICE and MGB units and the speed request for the MGA 

unit from the SC are used to calculate the individual component speeds and torques based on 

kinematical equations for the two planetary gear set arrangement. Once the vehicle torques and speeds 

are determined, the performance maps are used to determine the overall battery power request for 

MGA and MGB. The ICE model was developed consisting sub-models of ICE dynamics including 

rotational and airflow dynamics with other subcomponents such as torque generation and exhaust gas 

recirculation (EGR) using the performance maps. The MGA and MGB models consist of efficiency 

maps extracted from [12]. The battery model consists of two circuits, one determining battery capacity 

and other with a series internal resistance and two RC circuits, encompassing battery thermal and 

electrical dynamics [11].   
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The TPIM efficiency map was also incorporated to accurately determine electrical energy. In addition, 

a heating ventilation air conditioning (HVAC) model was created by modelling cabin, heaters, ICE 

coolant thermal model, compressor, heat exchangers between ICE coolant and the air coming from the 

cabin vent. The driver’s set point temperature is the only input and the HVAC model determines the 

HVAC energy consumption.  

 

In addition, for each simulation time step, the amount of fuel consumed for the operation is calculated 

using the developed ICE model. The total electrical energy consumed is calculated using the battery 

model, resulting in instantaneous energy consumption. Our model considers the fuel penalties 

associated with the cold start-up and catalyst heating for fast light-off. In order to calculate the net 

energy consumption, the vehicle plant model requires the inputs from the SC that will be explained in 

the followings. 

 

 

 

 

 

Figure 2: Designed vehicle dynamics and powertrain (VD&PT) model 
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2.2- Supervisory Control (SC) Model 

Fig. (3) shows the overview of the SC model that determines the required torque and speed inputs to 

the three power sources, including ICE, MGA, and MGB. There are three major subsystems within this 

controller. These subsystems include a friction brake model, mode selection model, and torque 

distribution model.  

 

 

Figure 3: HEV supervisory controller (SC) model developed in this work 

 

The vehicle is able to decelerate the vehicle by using the regenerative braking as well as the 

conventional friction brakes. The controller modelled here is designed to command braking in such a 

way that results in the largest recovered energy based on the capacity of MGB and the amount of 

friction braking depends on the regeneration capacity of MGB unit since MGA is not involved in 

regenerative braking. The excess energy is dissipated by the friction braking as heat. The generated 

friction brake torque is then sent to the vehicle dynamics block in the plant model. The other two 

subsystems, namely, the drive mode selection model and the torque distribution model are discussed in 

the following subsections. 
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2.2.1-Vehicle Drive Modes 

The Chevy Volt Gen II operates in five drive modes, two EV modes, and three range extender modes. 

Depending on battery SOC, the vehicle operates as an EV up to 53 miles using the fully charged 18.4 

kWh Li-ion battery pack. The range extender modes are in action as soon as the battery SOC drops 

below 18%. This threshold SOC value also depends on the wheel power at that moment and thus can 

vary [5]. Fig. (4) shows the schematic of the vehicle drive unit. The ICE and MGA are connected 

through the planetary gear set 1 (PG1) through ring and sun gears, respectively. A one-way clutch 

(OWC) is used to engage the engine when the vehicle executes range extender modes. The MGB is 

placed in connection to the unit through the planetary gear set 2 (PG2) through sun gear. The planet 

carrier of both sets is attached to the wheels. The three clutches, shown in Figure 4, creates five distinct 

modes in Volt Gen II.  

 

(a) One motor EV (1EV) mode 

Fig. (4)-a shows the 1EV power flow (shown by red lines). This mode is activated at low axle 

torque loads. To operate this mode, the clutch 2 is closed and clutch 1 is open and the OWC is 

unloaded; thus, the MGB unit is engaged to drive the vehicle as well as for regeneration. 

 

(b) Two motor EV (2EV) mode 

Fig. (4)-b shows the power flow in 2EV operation. This mode is engaged every time the vehicle 

starts, irrespective of whether the vehicle is in CD or in CS mode. This mode is primarily used at 

higher loads. Clutch 2 remains closed, the OWC is now engaged to fix the ring gear of (PG1) and 

thus MGA unit is also used to support the power demands. 

 

(c) Low Extended Range (LER) mode 

Fig. (4)-c shows the power flow when the vehicle executes LER mode. This mode is activated 

when both clutch 1 is open and 2 is closed and the OWC is freewheeling, thus allowing the engine 

to support power requirements. This mode is the first of the range extender operation and is 

operated for high loads at speeds up to 60 kph.  
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(a) One motor EV (b) Two motor EV 

  
  

(c) Low extended range (d) Fixed extended range 

  
(e) High extended range 

 
Figure 4: Chevy Volt Gen II drive modes 

 

 

 

          Power Flow 

          Mechanical Connections 
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(d) Fixed Extended Range (FER) mode 

This mode mechanically connects the IC engine to the wheels. Fig. (4)-d shows the power flow for 

this mode. With respect to LER mode, both the clutches are closed as MGA unit is not performing 

any operation and all the engine power is sent to wheels. This mode operates at higher vehicle 

speeds above 60 kph to 110 kph with higher torque demands than those in LER.  

 

(e) High Extended Range (HER) mode 

As the name suggests, for any higher torque demands and at higher speeds than 110 kph, this 

mode is used. Fig. (4)-e shows the power flow for this mode. This mode performs the compound 

power split of engine power by distributing engine power at PG1 through planet carrier, sun gear 

and clutch 1. In this case, the clutch 1 is closed again and clutch 2 is opened to transit the engine 

power through PG2. 

 

2.2.2- ANN Mode Prediction Model 

 The first thing that ECU should decide is which mode to command in order to meet the power request. 

Since there are five distinct modes of operation for the Chevy Volt in CS operation, a five-class 

classification machine learning platform is designed.  This approach was chosen over surface-response 

approaches because surface-response methods highly depend on hand-crafted decision- boundaries 

separating the different classes which were found to be highly subject-specific and also prone to 

visualization error (the last data plotted had more impact on plotting the decision boundaries) however 

the machine learning approach was fast in closed-loop simulation environment as well as free from 

visualization error or dependency on  human intervention to define decision boundaries. Multiple 

learning algorithms were tested such as KNN (K-nearest neighbors), decision trees, support vector 

machine (SVM) using MATLAB classification toolbox, and the most suitable algorithm was found to 

be ANN which has been extensively deployed in complicated classification problems [13].  

 

An ANN was trained to select a mode of operation based on the following features. The feature vector 

includes 1. Axle torque: this is one of the most informative features when it comes to mode selection, 

since modes are designed for different levels of axle torque at the first place. Axle torque directly 
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affects power request, hence was included as the first element of the feature vector, 2. Vehicle speed: 

this feature is also an important feature because the vehicle speed determines the vehicle kinetic 

energy, which correlates with the mode (higher modes are associated with higher vehicle kinetic 

energy since there has been more energy input to the vehicle as the operating mode is going towards 

HER). In addition, the kinematic constraints of the vehicle depend on the vehicle speed and to be in 

certain modes, a specific range of speeds is a necessity for the realization of the kinematic constraints. 

3. SOC: In charge sustaining mode where the SOC is comparatively low,  it was found out that the 

SOC level is affecting operating mode. Lower SOCs are associated with battery inefficient regions of 

operation and higher chances of battery aging, hence the ECU of the vehicle is “SOC-conscious” when 

selecting modes to be using more ICE when SOC drops in CS mode, 4. Acceleration: Higher 

accelerations correlate with higher power request, which is a fundamental mode-selection parameter. 

After looking at the raw data of accelerations, the decision was made to include this feature which 

contains the footprint of the operating mode, 5. Battery power: This feature is correlated with total 

power request, and helps in two ways. First, it can help in distinguishing between EV1 and EV2 

modes, as they are associated with different levels of battery power. Second, it includes the effect of 

regenerative braking in the feature vector, which is hard to include using the other features such as 

speed or acceleration. When regen is at the place, there is a high chance that the vehicle is going to 

experience a “lower mode” towards 1EV, 6. Previous mode: The logic behind adding this was that the 

real ECU works based on hysteresis margins and it was necessary to account for this effect in 

simulation.  

  

ANL researchers conducted extensive chassis dynameters for this vehicle. More than 12 CS 

experiment recording was chosen which included UDDS, US06, HWFET, zero grade passing, and 

other drive cycles [6]. The data was combined and shuffled as a routine practice in machine learning in 

order to enhance the generalizability of the learning algorithm. Then this data was used for training and 

validation purposes. The training data was 70% of all the data mentioned previously, and 15% was 

used for validation and 15% was used to test the performance of the developed tool. The data for each 

signal was normalized based on the minimum and maximum values observed throughout the tests 

obtained by ANL, so the numbers fed to ANN were between -1 and 1. This was an important step 
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which resulted in higher than 99% accuracy for the ANN for test data, as ANNs are sensitive to the 

outliers. 

  

The architecture of the ANN was a three-layer fully connected network with 10 neurons at the hidden 

layer. The reason for the architecture was our inputs (or feature vector) were highly representative of 

each mode and the need for a deeper ANN was not felt. In addition, our higher than 99% accuracy for 

test data assured that the developed ANN had acceptable performance when working with static data.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Error in training mode selector ANN 

 

Table 2 shows the training error of the ANN which demonstrates an interesting pattern. For each class 

(mode), the highest number of false predictions are adjacent modes, e.g. for mode LER, even though 

the ANN predicts the mode accurately more than 98% of the instances, its false predictions are mainly 

FER and 2EV. This can be explained by the fact that the transitioning modes, e.g. LER to FER, were 

Figure 5: ANN architecture to predict vehicle drive mode 
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not considered as “classes” and introduce confusion to the learning algorithm; however, the rate of 

false prediction is very low (less than 2%), as shown in Table 2. 

 

2.2.3-Torque Distribution Model 

Once the drive mode of the vehicle is selected by the ANN, the distribution of the torque requested 

among the three power sources is done by using the logics identified and developed using the ANL 

experimental data. Kim et al. [5, 6] investigated vehicle operating points for standard FTP drive cycles 

as shown in Fig. (6). The vehicle shifts into CS drive mode of operation usually at battery SOC below 

18% as shown in Fig. (6)-a. The engine start points also wary based on the battery SOC [5, 6].  

 

If the SOC is below 15%, then the engine is turned on during wheel power demands as low as 10 kW 

as shown in Fig. (6)-a. In addition, as shown in Fig. (6)-b, it was found that the vehicle keeps the 

engine rotating and cut off the fuel when the vehicle speed is above 40 mph. If the speed is lower than 

40 mph, the ECU commands the engine to stop. During 2EV drive mode, the vehicle operates the 

MGB and MGA drive units with an average torque distribution of 90:10, i.e. 90% of the vehicle power 

demand is covered up by the MGB unit and the rest is provided by the MGA. The LER and HER drive 

modes work almost similarly with the engine being working in very narrow and efficient operating 

region, around 25 kW to 35 kW with the rest of the power demand or excess energy directed to the 

MGB. This is evident in Fig. (6)-c where, even at high loads, the ECU tries to keep the engine running 

in an efficient region with power output below 35 kW. The MGA in these drive modes works closely 

with ICE to control the engine speed and to charge the battery when the excess power is available. 

 

In the FER mode, the ICE goes into direct mechanical connection with the wheels, with a high amount 

of energy provided by the engine and the rest is provided by the MGB. During this drive mode, the 

MGA charges the battery whenever necessary but the instances are rare as the SC sends all the engine 

power to the wheels. In addition, Fig. (6)-d shows the operating regions of these modes, which 

suggests that these different drive modes are designed to supply power at specific loads and speeds. 

These control strategies from references [5,6] along with ANL and our vehicle test data were used to 

develop the torque distribution model in this work. 
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(a) (b) 

  

(c) (d) 

  

Figure 6: Chevy Volt Gen II Powertrain operating points [5,6] (a) Engine starting points for CS operation, (b) Fuel 

cut-off and engine stopping conditions, (c) Engine power with respect to power threshold, (d) Axle torque and speed 

operating points for CS drive mode 

 

Fig. 7 shows the part of torque distribution algorithm used in the SC. Based on the drive mode selected 

by ANN model, various torque distribution rules are used to determine component torques and speeds. 

The distribution is also checked to see if it follows the kinematic constraints of the drive unit. The 

distribution between the power sources is dependent on the power demand, torque request and battery 

SOC. For example, if the vehicle is in LER mode, and if the wheel power demand is low, engine is still 

run at higher power, the excess of which is used to charge the battery through MGA unit. This ensures 

that the engine always operates in the most efficient region even though the demand of power is low. 

In addition, when the vehicle is in FER mode, the torque of the engine is fixed in the efficient 

operating region and all the power is sent to wheels and no battery charging through MGA unit. 
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Figure 7: SC torque distribution algorithm for vehicle acceleration 

 

2.3- Control-Oriented Driver Model 

The driver model provides the necessary control input to the supervisory controller for knowing the 

requested axle torque based on vehicle acceleration and deceleration. The driver model is thus affected 

by the target speed set by speed limits and driver demand as well as the feedback of actual vehicle 

speed. This is a classic tracking problem, therefore, PIDs are good candidates to consider for this task. 

By comparing the target speed and actual speed, the driver decides to accelerate or decelerate the 
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vehicle. Powell et. al. [14] developed a PI-based driver model which generates vehicle acceleration or 

braking command based on the comparison of target and actual speed. There are various driver models 

developed based on the control inputs required as described in reference [15]. Since the SC works on 

just one control input i.e. the axle torque request, the driver is required to perform a tracking task to 

match the actual speed to the target speed.  

 

In this work, a PI control was used to minimize the speed tracking error by commanding the required 

axle torque to the SC. Therefore, a particular set of PI gains can be correlated to particular driving 

behavior, representing different levels of aggressive driving. Figure (7) shows the implemented driver 

model. The target vehicle speed and actual vehicle speed are compared and the difference is fed to the 

PI controller, which produces an axle torque request. The gains of the PI control, the Ki and Kp, are 

tuned to represent a particular driving behavior. A report by National Renewable Energy Lab (NREL) 

[16] found a general trend of increased average fuel consumption for higher acceleration rates and 

observed that vehicles in city traffic moving very slowly also resulted in higher fuel consumption. To 

this end, the effect of driving behaviour on vehicle total energy consumption was investigated. 

 

 

Figure 8: PI-based driver model in this study 

 

A number of experiments were conducted at Michigan Technological University to capture 

acceleration rates for driver executing two different aggressive driving for a near step increase in 

vehicle speeds. Using these recorded speed profiles, the PI was tuned to mimic the driving behavior of 

two drivers.  

 

McLaughlin et. al.  studied human response time and found that more than 90% of the drivers are able 

to respond as quickly as 2.25 seconds or less [17]. This response time is used for tracking vehicle 
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speeds in the generic drive cycle that corresponds to driving conditions (legal speed limits, traffic 

conditions, etc) near Houghton and Hancock, MI area as will be discussed later in Section 3. 

 

Table 3: Controller gains obtained from experimental data for two different driving behaviour 

Control Parameter Driver A Driver B 

Proportional Gain (N.s) 10 60 

Integral Gain (N) 1 30 

 

3.-Results and Discussion 

Two representative FTP drive cycles were used to validate the overall model: namely UDDS and US06 

as shown in Fig. (9). The performance of the model for predicting vehicle energy consumption is 

presented in Table 4. The results in Fig. (9) and Table 4 confirm: 1) Model is able to follow reference 

trajectory with an average error of less than 0.5 kph, 2) Predicted vehicle energy consumption is within 

5% of that of the experimental data.  

Figure 9: Model performance for UDDS and US06 drive cycles 

(a1) UDDS Drive Cycle (b1)  US06 Drive Cycle 

  

(a2) Simulated Modes (b2) Simulated Modes 
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Table 4: Predicted vehicle fuel and electrical energy consumptions against vehicle experimental data* 

 

Cycle 

Model Simulation Experimental Data 

Error (%) 
Fuel 

(MJ) 

Electrical 

(MJ) 

Total 

(MJ) 

Fuel 

(MJ) 

Electrical 

(MJ) 

Total 

(MJ) 

UDDS 15.54 1.79 17.33 17.83 0.16 17.99 -3.67 

US06 2.50 0.58 22.08 22.87 -0.29 22.58 -2.21 

 

After characterization of the driver model, the driving behavior for the generic drive cycle was 

simulated. Fig. (9) shows the driver A and driver B performance in tracking the reference velocity 

trajectory. It was observed that in order to achieve the increased speed limit, both drivers are 

overshooting to reach the target with as high as 110 kph for the more aggressive driver. In addition, the 

more aggressive driver (driver B) was able to achieve the targeted speeds with more accuracy than the 

less aggressive driver (driver A). During the time taken by the driver A to reach a target speed, a new 

speed target was already given to the driver. Thus, poor tracking performance is observed for the driver 

A because of slow response time. 

 

Figure 10: Effect of driver for tracking target vehicle speed in a generic drive cycle with intensive transient 

operating conditions 

 

 (a) (b) 

  

*Driver variation effect has not been taken into account in the reported data since the focus of this comparison is to assess the developed SC performance. 
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The total energy consumption for both drivers is shown in Table 5. Driver B is found to be using 6% 

more energy than the less aggressive driver, due to its higher acceleration and consequently a higher 

overshoot on target for most time instances. The main energy difference here is due to the peak 

acceleration rate of driver B, which requires the vehicle to use both the engine as well as the battery to 

support this excessive power request. As the SC restricts the ICE operation to be in most efficient 

brake specific fuel consumption (BSFC) region, the MGB is commanded by the ECU to provide the 

excess power request which, in result, increases the vehicle electrical energy consumption.  

 

Table 5: Energy consumed for the two simulated driving behavior 

Driver 

Model Simulation Energy 

Difference 

(%) 

Fuel 

(MJ) 

Electrical 

(MJ) 

Total 

(MJ) 

Driver A 59.21 0.87 60.09 - 

Driver B 60.14 3.99 64.14 +6.73 

 

 

4. - Summary & Conclusions 

An SC model was developed for Chevy Volt Gen II powertrain that predicts total vehicle energy 

consumption within 5% of the experimental data. The SC includes an ANN model to select vehicle 

drive mode by using the most informative powertrain data. After determination of the operating mode, 

an empirical rule-based torque distribution model was developed to distribute required axle torque 

between ICE and two electric motors. In addition, a PI control-based driver model was developed to 

simulate driver acceleration speed profile. This model along with road gradient load provides inputs to 

the SC model. The experimental validation results for two US driving cycles showed that the 

developed model is able to simulate vehicle energy consumption for actual on-road conditions with 

less than 5% prediction error. The effect of driver acceleration speed profile was also investigated and 

showed that the vehicle energy consumption can change by over 6% for the conditions investigated, 

depending on how aggressive the driver was. 
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The developed model is of great utility to develop MIL and HIL platforms to simulate vehicle 

performance and also provide a benchmark to assess the performance of different designed controllers 

in comparison to the vehicle control strategies embedded in the production vehicle ECU.  
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Nomenclature: 

1EV 1 Motor Electric Drive 

2EV 2 Motor Electric Drive 

AFV Alternative Fuel Vehicles 

ANL Argonne National Laboratory 

ANN Artificial Neural Network 

ARPA-E Advanced Research Projects Agency-Energy 

CD Charge Depleting 

CS Charge Sustaining 

FER Fixed Extended Range Drive 

FTP Federal Test Procedures 

GM General Motors 

HER High Extended Range Drive 

HEV Hybrid Electric Vehicle 

HIL Hardware In the Loop 

LER Low Extended Range Drive  

MGA/B Motor Generator A/B 

MIL Model In the Loop 

NEXTCAR Next Generation Energy Technologies for Connected and Automated On-road Vehicles 

OEM Original Equipment Manufacturer 

OWC One Way Clutch 

PHEV Plug-in Hybrid Electric Vehicle 
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SC Supervisory Controller 

SIL Software In the Loop 

SOC State of Charge 

TPIM Transmission Power Inverter Module 

UDDS Urban Dynamo meter Driving Schedule 

V2X Vehicle to Everything 

VD&PT Vehicle Dynamics & Powertrain 

 


